### Author Topic: Question on Probability  (Read 175 times)

0 Members and 1 Guest are viewing this topic.

#### Scarface

• Mature Member
• Posts: 220
• Thanked: 175 times
##### Question on Probability
« on: April 14, 2018, 06:23:56 PM »
Hi, can I get any help from the math guys?  I've been having alot of success picking numbers on intuition.  My plan is to play 3 numbers only.

Anyway, my question is what is the probability that I should lose at 100 spins....or 1000 spins?  Playing 3 numbers only

#### Scarface

• Mature Member
• Posts: 220
• Thanked: 175 times
##### Re: Question on Probability
« Reply #1 on: April 14, 2018, 06:25:27 PM »
I want to test this long term.  But I need to know how many spins I should test this for so it would matter statistically, and not be just by luck.  I know the more spins the better

#### kav

• www.Roulette30.com
• Hero Member
• Posts: 2227
• Thanked: 1170 times
• Gender:
##### Re: Question on Probability
« Reply #2 on: April 14, 2018, 08:42:54 PM »
```Spins		Probability % to...
...hit at least once	...hit exactly once	...hit more than once	...sleep all spins

1		8.108108108108098	8.108108108108098	0	91.8918918918919
2		15.558802045288516	14.90138787436085	0.657414170927666	84.44119795471148
3		22.405385663238093	20.53975085384874	1.865634809389352	77.59461433676191
4		28.696840879732292	25.165820865976837	3.5310200137554553	71.30315912026771
5		34.47817810569995	28.906686129838263	5.57149197586169	65.52182189430005
6		39.790758259291835	31.87548092155138	7.915277337740456	60.209241740708165
7		44.672588670700605	34.17281287986139	10.499775790839216	55.327411329299395
8		49.15859499469784	35.888050591977986	13.270544402719857	50.84140500530216
9		53.28087107620883	37.100484733598876	16.180386342609957	46.71912892379117
10		57.06890855651622	37.88037480307392	19.1885337534423	42.93109144348378
11		60.54980786274463	38.28989236851256	22.259915494232068	39.45019213725537
12		63.748472090089656	38.38397072814036	25.364501361949294	36.251527909910344
13		66.68778516386618	38.21106995909469	28.476715204771494	33.312214836133826
14		69.38877555598512	37.813865489665424	31.574910066319696	30.611224444014873
15		71.87076672712146	37.22986756704512	34.640899160076344	28.129233272878533
16		74.15151537086837	36.49197829995053	37.659537070917835	25.84848462913163
17		76.24733844890606	35.62899232664089	40.61834612226517	23.752661551093933
18		78.17322992602179	34.66604658808304	43.50718333793875	21.826770073978206
19		79.94296804012814	33.62502416802048	46.317943872107655	20.057031959871868
20		81.56921387471233	32.52491669168411	49.04429718302822	18.430786125287664
21		83.06360193892485	31.382149348462782	51.681452590462065	16.93639806107515
22		84.43682340333635	30.21087221705297	54.22595118628338	15.563176596663656
23		85.69870258684962	29.023221220805198	56.67548136604442	14.301297413150385
24		86.85826724196991	27.82955172288724	59.028715519082674	13.141732758030086
25		87.92381314126965	26.638647482493422	61.28516565877622	12.076186858730349
26		88.90296342711265	25.457907431918034	63.44505599519462	11.09703657288735
27		89.80272314923866	24.293512497402034	65.50921065183663	10.197276850761348
28		90.62952938038146	23.150574471998738	67.47895490838272	9.370470619618537
29		91.38929726845865	22.033268754238183	69.35602851422047	8.610702731541357
30		92.08746235479983	20.944952590235733	71.1425097645641	7.912537645200168
31		92.72901946116741	19.888270297395017	72.84074916377239	7.270980538832587
32		93.31855842377546	18.865246803457524	74.45331162031793	6.6814415762245405
33		93.86029692995582	17.877370703952153	75.98292622600367	6.139703070044173
34		94.35811069239185	16.925667922824477	77.43244276956737	5.641889307608159
35		94.8155611767925	16.010766954023158	78.80479422276935	5.184438823207498
36		95.23592108137689	15.132956565038103	80.10296451633879	4.764078918623107
37		95.62219775045445	14.29223675586932	81.32996099458512	4.3778022495455575
38		95.97715468960678	13.488363687789015	82.48879100181776	4.022845310393216
39		96.30333133639542	12.720889224756927	83.58244211163849	3.6966686636045765
40		96.60306122803904	11.989195665744571	84.61386556229446	3.3969387719609627
41		96.87848869603587	11.292526187870228	85.58596250816565	3.1215113039641285
42		97.1315842071681	10.63001146755352	86.50157273961459	2.8684157928319016
43		97.36415846064095	10.000692899332847	87.3634655613081	2.6358415393590446
44		97.5778753422106	9.4035427890647	88.1743325531459	2.422124657789393
45		97.77426382797732	8.837481859501839	88.93678196847549	2.225736172022685
46		97.95472892300619	8.301394371327852	89.65333455167834	2.0452710769938194
47		98.1205617130327	7.794141131246717	90.32642058178598	1.8794382869672936
48		98.27294860116518	7.3145706303591975	90.95837797080598	1.7270513988348106
49		98.41297979566531	6.861528530505869	91.55145126515944	1.5870202043346908
50		98.54165710953028	6.433865693248747	92.10779141628153	1.458342890469716
51		98.65990112767648	6.0304449254558525	92.62945620222062	1.3400988723235228
52		98.768557793	5.650146596823502	93.1184111961765	1.2314422069999942
53		98.86840445843244	5.291873267918894	93.57653119051355	1.1315955415675623
54		98.96015544828927	4.954553452268787	94.00560199602049	1.039844551710733
55		99.04446716869825	4.6371446224938095	94.40732254620444	0.9555328313017546
56		99.12194280366866	4.338635558343102	94.78330724532556	0.8780571963313423
57		99.19313663039823	4.058048123585393	95.13508850681283	0.8068633696017738
58		99.25855798469026	3.7944385489380714	95.46411943575218	0.7414420153097383
59		99.31867490485051	3.546898289454694	95.77177661539582	0.6813250951494892
60		99.3739174801329	3.314554516943461	96.05936296318944	0.6260825198670983
61		99.42468092768969	3.096570300964297	96.32811062672539	0.5753190723103064
62		99.47132842003917	2.892144525668027	96.57918389437114	0.5286715799608223
63		99.51419368327925	2.7005115841242002	96.81368209915505	0.4858063167207556
64		99.55358338463498	2.520940886767164	97.03264249786781	0.44641661536501875
65		99.58977932642134	2.3527362161129366	97.2370431103084	0.4102206735786659
66		99.6230404621169	2.195234955907455	97.42780550620945	0.3769595378830984
67		99.65360474897228	2.047807219310886	97.6057975296614	0.34639525102771207
68		99.68169085040697	1.9098548975581964	97.77183595284878	0.31830914959303275
69		99.70749970037397	1.7808106477231833	97.92668905265079	0.2925002996260301
70		99.73121594088418	1.660136835715306	98.07107910516888	0.2687840591158115
71		99.75300924297466	1.5473244484234554	98.2056847945512	0.24699075702534026
72		99.77303552057131	1.4418919869587432	98.33114353361258	0.22696447942869108
73		99.79143804593039	1.3433843512130634	98.44805369471733	0.20856195406960806
74		99.80834847463873	1.2513717244176485	98.55697675022108	0.19165152536126148
75		99.82388778750587	1.1654484650346983	98.65843932247117	0.17611221249413217
76		99.83816715608647	1.0852320121260037	98.75293514396047	0.16183284391352687
77		99.8512887380254	1.0103618092979652	98.84092692872744	0.14871126197459225
78		99.86334640791524	0.9404982514068808	98.92284815650837	0.13665359208476047
79		99.87442642889509	0.8753216574077901	98.9991047714873	0.12557357110491504
80		99.88460806979549	0.8145312720318815	99.0700767977636	0.11539193020451653
81		99.8939641722445	0.7578442983702032	99.13611987387429	0.10603582775550169
82		99.90256167179224	0.7049949629149571	99.19756670887729	0.09743832820775832
83		99.91046207678205	0.6557336141549142	99.25472846262714	0.08953792321794007
84		99.91772190839433	0.6098258554302945	99.30789605296403	0.08227809160567467
85		99.924393105011	0.5670517124174876	99.35734139259353	0.07560689498899835
86		99.93052339379389	0.5272048353286912	99.4033185584652	0.0694766062061066
87		99.93615663213492	0.49009173567010333	99.44606489646482	0.06384336786507093
88		99.94133312142128	0.455531057199425	99.48580206422186	0.05866687857871384
89		99.9460898953601	0.4233528805545026	99.5227370148056	0.0539101046398992
90		99.9504609849255	0.39339806088575097	99.55706292403976	0.04953901507450197
91		99.95447766182343	0.36551759771186587	99.58896006411156	0.04552233817656939
92		99.95816866221612	0.339572036127923	99.6185966260882	0.04183133778387458
93		99.96156039230671	0.31543089842435157	99.64612949388236	0.03843960769329015
94		99.96467711725481	0.29297214512183306	99.67170497213297	0.03532288274518555
95		99.96754113477469	0.27208166438859144	99.6954594703861	0.03245886522530564
96		99.97017293465782	0.2526527887807574	99.71752014587707	0.029827065342172755
97		99.97259134536125	0.23458583823168302	99.73800550712957	0.027408654638753346
98		99.97481366871034	0.21778768821063468	99.7570259804997	0.025186331289665236
99		99.97685580367977	0.20217136197379934	99.77468444170597	0.023144196320232922
100		99.97873236013817	0.1876556458397264	99.79107671429844	0.02126763986183566```

#### Scarface

• Mature Member
• Posts: 220
• Thanked: 175 times
##### Re: Question on Probability
« Reply #3 on: April 14, 2018, 09:37:52 PM »
Thanks for the info Kav.  But really, I'm looking for the probability of being at break even or in profit over 100 spins, or 1000 spins.  I have no idea how to calculate that.  Guess I can test anyways and see how I do

#### Mike

• Great Contributor
• Posts: 888
• Thanked: 181 times
##### Re: Question on Probability
« Reply #4 on: April 15, 2018, 08:20:40 AM »
Scarface,

You need the binomial distribution to calculate it, but first have to find the break even number of wins. In 100 trials you will on average win 100 * (3/37) = 8.1 times, and just multiply by 10 to get the number of wins in 1000 trials ie, 81.

Then using a binomial distribution calculator the probability of getting more than 8 wins in 100 trials is 42.3%, and for more than 81 wins in 1000 trials the probability is 47.5%.
« Last Edit: April 15, 2018, 08:22:33 AM by Mike »

The following users thanked this post: kav, Scarface, MickyP

#### Scarface

• Mature Member
• Posts: 220
• Thanked: 175 times
##### Re: Question on Probability
« Reply #5 on: April 15, 2018, 02:50:07 PM »
Thanks Mike!  But shouldn't the probability of winning in 1000 spins be less than 100 spins due to the house edge?

#### MickyP

• Hero Member
• Posts: 1152
• Thanked: 506 times
• Gender:
##### Re: Question on Probability
« Reply #6 on: April 15, 2018, 05:34:51 PM »
It's proportionate and the% remains the same.

#### Scarface

• Mature Member
• Posts: 220
• Thanked: 175 times
##### Re: Question on Probability
« Reply #7 on: April 15, 2018, 07:52:02 PM »
I think I kind of figured it out.  If the house has an edge of 2.7%, and I bet \$1 on 3 numbers each spin then I should expect to lose 8.1 cents per spin.  So, in 100 spins I should lose \$8.10...in 1200 spins loss should be \$97.  Just trying to see if I can beat house edge in 1200 spins without using a progression

#### dobbelsteen

• Hero Member
• Posts: 1572
• Thanked: 558 times
##### Re: Question on Probability
« Reply #8 on: April 16, 2018, 01:46:42 PM »

The features on a wager of 3 random numbers or three particular numbers are the same. It stay a 3 number bet. The short run event of a 3 number bet is very large. What kind of progression do yo use? In the short run every thing is possible. With a strategy and hot and run you can be successful. Break even points are random and very rare.
The results of an Excelprogram  can give you the answers.
here two examples, one of a 5 number bet and one for a 12 number bet. Without such diagrams , you can not analyse systems. For the short run probability theory has less value.

#### MrPerfect.

• Hero Member
• Posts: 1796
• Thanked: 994 times
##### Re: Question on Probability
« Reply #9 on: April 16, 2018, 02:32:59 PM »
Scarface, you will never beat the house edge. It's mathematical way wired into the game. However, you can beat the house if you aquire players edge. If your players edge is higher then house edge... it's good, nice.
How to abuse on players edge( way to bet optimally ) will depend on how much of it you are able to aquire and hold. With 3 numbers bet mistakes are cheaper...