Bitcoin jackpot 728x90

Author Topic: Progression dilemma  (Read 618 times)

0 Members and 1 Guest are viewing this topic.

kav

  • www.Roulette30.com
  • Administrator
  • Hero Member
  • *****
  • Posts: 1937
  • Thanked: 926 times
  • Gender: Male
Progression dilemma
« on: April 04, 2017, 04:23:23 PM »
In the design of every progression there are two opposite concerns that should be taken care of.
  • Finish the attack with as few wins as possible.
  • Don't increase your bets fast.
You can't have it both ways. In order to finish in profit with few wins you have to increase the bets fast. The wins you need, the faster the bet increases. The extreme case being the Martingale, which produces a profit with just one win no matter how many losses.

On the other hand, if you use a slow progression, you can be swimming in the negative waters for too long and after a short wave of positive results that may not be able to produce a profit a new greater negative wave can throw you deeper in loss territory.
In my opinion this is THE dilemma. Also explained here: Progression analysis: Fluctuation and Streaks

Supposedly the best possible progression would be something like a happy medium. Taking good advantage of wins, yet not increasing too fast.

I understand that I just describe the problem offering no specific solution, but they say, to understand the problem is part of the solution.


 
The following users thanked this post: Reyth

MrPerfect.

  • Hero Member
  • ******
  • Posts: 1375
  • Thanked: 793 times
Re: Progression dilemma
« Reply #1 on: April 04, 2017, 04:41:48 PM »
Just hit more often. That will resolve all your problems.
 
The following users thanked this post: Reyth

kav

  • www.Roulette30.com
  • Administrator
  • Hero Member
  • *****
  • Posts: 1937
  • Thanked: 926 times
  • Gender: Male
Re: Progression dilemma
« Reply #2 on: April 04, 2017, 04:51:16 PM »
Sure.
 

Reyth

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 3977
  • Thanked: 1280 times
Re: Progression dilemma
« Reply #3 on: April 04, 2017, 05:35:45 PM »
Divisors and debt banks are the same thing.  Statistically it is easier to achieve a smaller win amount than a larger win amount.  So my theory is, chain together smaller win amounts for a better statistical chance of elcipsing the target debt without encountering a counter-swing.

So, like this:

100 units of debt accrued at 1 bet unit. 

We can try to regain this with 50 2 unit bets in one shot, OR we can divide the debt into 4 sections of 25 units, achieving each target goal of 25 units with only 13, 2 unit bets.

The second method offers the following advantages:

1) A smaller exposure in number of spins per session
2) A smaller exposure in chips at risk at one time

This is not the entire picture because our bet selection should also include a statistical component that will indicate to us when we have larger chances than normal to obtain a hit and raising during those moments will also provide a positive incline to our recovery.

So far this has worked very well for me and (I have heard from) others as well.  The theory seems a bit sketchy but it would revolve around an exponential risk factor over a larger amount of spins.  If we can prove that there is an exponential increase in risk over a number of spins (as opposed to a static increase) then we can prove this theory.

A common example of this might be understood through computer simulations.  I have noticed, time and time again, that the very worst loss streaks don't appear until after 1M or even more spins/coup events; it just seems to happen every time that a larger number of spins/events is required for them to even show up.

Does this mean they can't or won't show up sooner?  No, but it would tend to indicate that the chances of encountering rare events in a session increase the longer the session runs until we reach a "100% point" and the rare event occurs.

Both Dobble and the IDG have referenced this where IDG says, "At a certain point the statistics will "cross" your session and you will start losing". 

He is actually saying two things here:

1) Set up your base progression system and profit goal to win in a short term span that will be consistently advantageous statistically

2) Set up your recovery progression system to win faster than your base progression system

I have attempted to emulate this and have met with suprising success.

This doesn't take into account another important factor which is bankroll.
« Last Edit: April 04, 2017, 05:48:05 PM by Reyth »
 
The following users thanked this post: jerome26b

Reyth

  • Global Moderator
  • Hero Member
  • *****
  • Posts: 3977
  • Thanked: 1280 times
Re: Progression dilemma
« Reply #4 on: November 20, 2017, 03:48:00 PM »
Here is the proof about loss chances based on per coup taken:

Code: [Select]
1  157  7.182725E-03
 2  175  1.518895E-02
 3  180  2.342392E-02
 4  200  3.257389E-02
 5  157  3.975661E-02
 6  177  4.785433E-02
 7  186  .0563638
 8  168  6.404977E-02
 9  202  7.329124E-02
 10  168  8.097722E-02
 11  167  8.861744E-02
 12  159  9.589166E-02
 13  161  .1032574
 14  175  .1112636
 15  164  .1187666
 16  169  .1264983
 17  160  .1338183
 18  137  .140086
 19  161  .1474517
 20  158  .1546802
 21  164  .1621832
 22  160  .1695032
 23  154  .1765486
 24  144  .1831366
 25  141  .1895873
 26  162  .1969988
 27  143  .203541
 28  145  .2101748
 29  165  .2177235
 30  169  .2254552
 31  142  .2319517
 32  131  .2379449
 33  145  .2445786
 34  130  .2505261
 35  143  .2570683
 36  136  .2632903
 37  150  .2701528
 38  133  .2762375
 39  143  .2827798
 40  127  .28859
 41  127  .2944002
 42  121  .2999359
 43  133  .3060207
 44  115  .3112819
 45  122  .3168634
 46  130  .3228109
 47  135  .3289871
 48  135  .3351633
 49  114  .3403788
 50  135  .346555
 51  118  .3519535
 52  113  .3571233
 53  119  .3625675
 54  102  .367234
 55  131  .3732272
 56  104  .3779852
 57  113  .3831549
 58  119  .3885991
 59  137  .3948669
 60  112  .3999909
 61  121  .4055266
 62  116  .4108336
 63  101  .4154543
 64  102  .4201208
 65  116  .4254278
 66  107  .430323
 67  103  .4350352
 68  105  .4398389
 69  118  .4452374
 70  86  .4491719
 71  86  .4531064
 72  107  .4580016
 73  104  .4627596
 74  100  .4673346
 75  100  .4719096
 76  95  .4762558
 77  98  .4807393
 78  112  .4858633
 79  80  .4895233
 80  103  .4942355
 81  100  .4988105
 82  92  .5030195
 83  96  .5074115
 84  85  .5113002
 85  102  .5159667
 86  70  .5191692
 87  86  .5231037
 88  86  .5270382
 89  73  .5303779
 90  86  .5343124
 91  83  .5381096
 92  102  .5427761
 93  91  .5469393
 94  102  .5516058
 95  103  .556318
 96  77  .5598408
 97  103  .564553
 98  77  .5680758
 99  78  .5716442
 100  83  .5754415
 101  71  .5786898
 102  78  .5822582
 103  78  .5858267
 104  72  .5891207
 105  71  .5923689
 106  72  .5956629
 107  82  .5994144
 108  92  .6036234
 109  74  .6070089
 110  58  .6096624
 111  75  .6130936
 112  61  .6158844
 113  90  .6200019
 114  74  .6233873
 115  72  .6266813
 116  74  .6300668
 117  78  .6336353
 118  78  .6372038
 119  74  .6405892
 120  58  .6432428
 121  56  .6458048
 122  75  .649236
 123  65  .6522097
 124  83  .6560069
 125  63  .6588892
 126  58  .6615427
 127  77  .6650654
 128  64  .6679934
 129  54  .6704639
 130  59  .6731631
 131  50  .6754506
 132  66  .6784701
 133  54  .6809406
 134  53  .6833653
 135  39  .6851496
 136  62  .6879861
 137  59  .6906853
 138  61  .6934761
 139  52  .6958551
 140  56  .6984171
 141  55  .7009333
 142  50  .7032208
 143  55  .7057371
 144  64  .708665
 145  44  .710678
 146  50  .7129655
 147  49  .7152072
 148  61  .717998
 149  46  .7201025
 150  47  .7222527
 151  56  .7248147
 152  58  .7274682
 153  42  .7293897
 154  41  .7312654
 155  41  .7331412
 156  49  .7353829
 157  40  .7372129
 158  63  .7400951
 159  39  .7418794
 160  52  .7442584
 161  45  .7463171
 162  43  .7482844
 163  53  .7507091
 164  55  .7532254
 165  55  .7557416
 166  53  .7581664
 167  49  .7604081
 168  46  .7625126
 169  43  .7644798
 170  31  .765898
 171  42  .7678196
 172  32  .7692835
 173  29  .7706103
 174  44  .7726233
 175  42  .7745448
 176  56  .7771068
 177  46  .7792113
 178  39  .7809955
 179  40  .7828255
 180  38  .784564
 181  37  .7862567
 182  43  .788224
 183  41  .7900997
 184  35  .791701
 185  37  .7933937
 186  44  .7954067
 187  38  .7971452
 188  40  .7989752
 189  31  .8003935
 190  41  .8022692
 191  34  .8038247
 192  38  .8055632
 193  29  .80689
 194  24  .8079879
 195  32  .8094519
 196  29  .8107787
 197  37  .8124714
 198  29  .8137981
 199  38  .8155366
 200  29  .8168634
 201  36  .8185104
 202  42  .8204319
 203  44  .8224449
 204  26  .8236344
 205  39  .8254186
 206  33  .8269284
 207  27  .8281636
 208  36  .8298106
 209  24  .8309086
 210  24  .8320066
 211  35  .8336079
 212  29  .8349346
 213  32  .8363986
 214  25  .8375423
 215  29  .838869
 216  32  .840333
 217  29  .8416598
 218  21  .8426206
 219  26  .84381
 220  36  .845457
 221  30  .8468295
 222  31  .8482478
 223  21  .8492085
 224  36  .8508555
 225  17  .8516333
 226  19  .8525025
 227  22  .853509
 228  22  .8545155
 229  22  .855522
 230  16  .856254
 231  23  .8573062
 232  21  .858267
 233  19  .8591362
 234  14  .8597767
 235  20  .8606917
 236  32  .8621557
 237  18  .8629792
 238  25  .864123
 239  18  .8649465
 240  22  .865953
 241  15  .8666392
 242  14  .8672797
 243  17  .8680575
 244  27  .8692927
 245  24  .8703907
 246  26  .8715802
 247  22  .8725867
 248  22  .8735932
 249  18  .8744167
 250  30  .8757892
 251  15  .8764755
 252  23  .8775277
 253  25  .8786714
 254  19  .8795407
 255  14  .8801812
 256  26  .8813707
 257  18  .8821942
 258  10  .8826517
 259  26  .8838412
 260  23  .8848934
 261  20  .8858084
 262  25  .8869522
 263  19  .8878214
 264  27  .8890566
 265  20  .8899716
 266  13  .8905664
 267  21  .8915271
 268  22  .8925336
 269  19  .8934029
 270  21  .8943636
 271  27  .8955989
 272  20  .8965139
 273  19  .8973831
 274  18  .8982066
 275  25  .8993503
 276  16  .9000823
 277  9  .9004941
 278  20  .9014091
 279  19  .9022784
 280  24  .9033763
 281  15  .9040626
 282  19  .9049318
 283  20  .9058468
 284  13  .9064416
 285  18  .9072651
 286  14  .9079056
 287  21  .9088663
 288  28  .9101473
 289  22  .9111538
 290  15  .9118401
 291  19  .9127093
 292  16  .9134413
 293  20  .9143563
 294  17  .9151341
 295  16  .915866
 296  14  .9165065
 297  15  .9171928
 298  15  .917879
 299  20  .918794
 300  10  .9192516
 301  11  .9197548
 302  20  .9206698
 303  10  .9211273
 304  16  .9218593
 305  12  .9224083
 306  16  .9231403
 307  13  .923735
 308  18  .9245585
 309  10  .925016
 310  14  .9256565
 311  12  .9262055
 312  15  .9268917
 313  13  .9274865
 314  13  .9280813
 315  17  .928859
 316  18  .9296825
 317  15  .9303687
 318  11  .930872
 319  17  .9316497
 320  13  .9322445
 321  9  .9326562
 322  12  .9332052
 323  11  .9337085
 324  10  .934166
 325  19  .9350352
 326  11  .9355385
 327  6  .935813
 328  12  .936362
 329  12  .936911
 330  14  .9375514
 331  9  .9379632
 332  12  .9385122
 333  12  .9390612
 334  17  .9398389
 335  10  .9402965
 336  17  .9410742
 337  12  .9416232
 338  9  .942035
 339  17  .9428127
 340  10  .9432702
 341  17  .9440479
 342  8  .944414
 343  10  .9448714
 344  9  .9452832
 345  11  .9457864
 346  9  .9461982
 347  7  .9465184
 348  8  .9468845
 349  10  .9473419
 350  6  .9476165
 351  7  .9479367
 352  5  .9481654
 353  11  .9486687
 354  10  .9491262
 355  6  .9494007
 356  8  .9497667
 357  11  .9502699
 358  6  .9505444
 359  8  .9509104
 360  10  .9513679
 361  7  .9516882
 362  5  .9519169
 363  8  .9522829
 364  11  .9527861
 365  11  .9532894
 366  7  .9536096
 367  4  .9537927
 368  8  .9541587
 369  5  .9543874
 370  9  .9547992
 371  7  .9551194
 372  7  .9554396
 373  9  .9558514
 374  7  .9561716
 375  13  .9567664
 376  9  .9571782
 377  2  .9572697
 378  5  .9574984
 379  8  .9578644
 380  10  .9583219
 381  5  .9585506
 382  5  .9587794
 383  8  .9591454
 384  8  .9595114
 385  6  .9597859
 386  13  .9603806
 387  8  .9607466
 388  8  .9611126
 389  2  .9612041
 390  12  .9617531
 391  5  .9619819
 392  9  .9623936
 393  5  .9626224
 394  9  .9630342
 395  5  .9632629
 396  4  .9634459
 397  3  .9635831
 398  6  .9638577
 399  6  .9641321
 400  13  .9647269
 401  3  .9648641
 402  6  .9651386
 403  7  .9654589
 404  10  .9659164
 405  7  .9662366
 406  8  .9666026
 407  6  .9668771
 408  6  .9671516
 409  6  .9674261
 410  5  .9676549
 411  8  .9680209
 412  7  .9683411
 413  6  .9686156
 414  4  .9687986
 415  3  .9689358
 416  6  .9692104
 417  12  .9697593
 418  4  .9699423
 419  3  .9700796
 420  9  .9704913
 421  6  .9707658
 422  5  .9709946
 423  3  .9711319
 424  10  .9715893
 425  3  .9717266
 426  2  .9718181
 427  4  .9720011
 428  9  .9724128
 429  7  .9727331
 430  8  .9730991
 431  5  .9733278
 432  2  .9734194
 433  3  .9735566
 434  1  .9736024
 435  1  .9736481
 436  7  .9739683
 437  4  .9741513
 438  4  .9743344
 439  6  .9746088
 440  4  .9747918
 441  4  .9749748
 442  3  .9751121
 443  7  .9754323
 444  10  .9758899
 445  2  .9759814
 446  6  .9762558
 447  5  .9764846
 448  2  .9765761
 449  3  .9767134
 450  9  .9771251
 451  0  .9771251
 452  4  .9773081
 453  4  .9774911
 454  5  .9777198
 455  3  .9778571
 456  4  .9780401
 457  5  .9782688
 458  5  .9784976
 459  7  .9788178
 460  3  .9789551
 461  4  .9791381
 462  1  .9791838
 463  4  .9793668
 464  1  .9794126
 465  3  .9795498
 466  2  .9796413
 467  2  .9797328
 468  3  .9798701
 469  1  .9799158
 470  4  .9800988
 471  2  .9801903
 472  3  .9803275
 473  4  .9805106
 474  4  .9806936
 475  4  .9808766
 476  2  .9809681
 477  2  .9810596
 478  1  .9811053
 479  4  .9812883
 480  5  .9815171
 481  2  .9816086
 482  7  .9819288
 483  3  .982066
 484  3  .9822033
 485  8  .9825693
 486  0  .9825693
 487  3  .9827065
 488  3  .9828438
 489  2  .9829353
 490  4  .9831183
 491  1  .9831641
 492  2  .9832556
 493  3  .9833928
 494  3  .98353
 495  6  .9838046
 496  3  .9839418
 497  4  .9841248
 498  6  .9843993
 499  6  .9846738
 500  4  .9848568
 501  1  .9849026
 502  3  .9850398
 503  2  .9851313
 504  7  .9854516
 505  3  .9855888
 506  3  .9857261
 507  1  .9857718
 508  4  .9859548
 509  3  .986092
 510  5  .9863208
 511  5  .9865496
 512  4  .9867325
 513  2  .986824
 514  2  .9869155
 515  3  .9870528
 516  6  .9873273
 517  3  .9874645
 518  4  .9876475
 519  1  .9876933
 520  2  .9877848
 521  3  .987922
 522  0  .987922
 523  2  .9880136
 524  4  .9881966
 525  1  .9882423
 526  2  .9883338
 527  0  .9883338
 528  2  .9884253
 529  3  .9885625
 530  2  .988654
 531  4  .9888371
 532  0  .9888371
 533  2  .9889286
 534  1  .9889743
 535  2  .9890658
 536  2  .9891573
 537  1  .989203
 538  5  .9894318
 539  0  .9894318
 540  3  .989569
 541  3  .9897063
 542  2  .9897978
 543  3  .989935
 544  2  .9900265
 545  0  .9900265
 546  4  .9902095
 547  3  .9903468
 548  2  .9904383
 549  1  .9904841
 550  2  .9905756
 551  2  .990667
 552  6  .9909415
 553  4  .9911245
 554  2  .991216
 ...
 1401  1  1

The more coups we gain, the greater chances for our progression to fail.  This particular table is based on a DS with a 27 step progression, which has a static 99.16% chance of hitting.

Tables can be generated for any betting scheme.

The general principle is that the more coups we take, the greater the chances of getting a failure; the shorter our recovery, the more success we will have.

Dividing the recovery into smaller chunks at decreasing bet amounts should improve our results.
« Last Edit: November 20, 2017, 05:56:03 PM by Reyth »
 
The following users thanked this post: vitorwally

Jesper

  • Hero Member
  • ******
  • Posts: 1203
  • Thanked: 607 times
  • Gender: Male
Re: Progression dilemma
« Reply #5 on: December 06, 2017, 11:22:58 AM »
I use to try smaller increase of bet and use the probability of a hit somewhat decrease.  Like  if we take the game on an EU-wheel.  I can bet all numbers except two (say 0 and 1). I chose a number which I want to hit, solving the session (say number 5).  Every time 0 or 1 NOT hit I gain one unit.

If a loss of 35 (0 or 1 hit) I move a chip to number 5, exposing three empty numbers.  If my number (5) hits before it is alone, the session is in profit. Many times we can stand far over hundred spins before it hits on the target number.

A loss happen when 35 is on the target number, but the loss is not too heavy.
There are ways to continue with 35 chips on the number if we want.
 
The following users thanked this post: Reyth